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Mechanical behavior of d-phase Pu–Ga alloys.
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Abstract

We developed a constitutive model, based on the mechanical threshold strength (MTS) model reported by Follansbee
and Kocks [P.S. Follansbee, U.F. Kocks, Acta Metall. 36 (1988) 81], to predict the stress/strain behavior of face-centered
cubic (fcc) d-stabilized plutonium–gallium (Pu–Ga) alloys. Input to the model is derived from our previous work on other
fcc metals and published test data for Pu–Ga alloys. The model accounts for the effects of temperature, strain rate, grain
size, and alloy content on the constitutive behavior. In Part I, we describe the development of the model and present all the
pertinent equations and parameters. In Part II, we validate the model against existing literature data and demonstrate how
the model is used to quantify the effects of test condition, grain size, alloy content, and impurity levels.
� 2005 Elsevier B.V. All rights reserved.
1. Introduction

Plutonium exhibits six distinct crystal structures
between absolute zero and its melting point with
very large volume changes accompanying several
of the phase changes. At room temperature and
below, it is in the brittle, low-symmetry monoclinic
a-phase. At 315 �C, it takes on the highly symmetric
d-phase face-centered cubic (fcc) structure. The
addition of 1–9 at.% gallium or aluminum retains
the d-phase (in a metastable condition) – which
exhibits low strength and high ductility, similar to
commercially pure aluminum – to room tempera-
0022-3115/$ - see front matter � 2005 Elsevier B.V. All rights reserved

doi:10.1016/j.jnucmat.2005.10.017

DOI of original article: 10.1016/j.jnucmat.2005.10.016
* Corresponding author. Tel.: +1 505 606 0107; fax: +1 505 667

8021.
E-mail address: kaschner@lanl.gov (G.C. Kaschner).
ture [2]. A better understanding of the mechanical
properties of Pu–Ga alloys is important to keep
the US nuclear-weapons stockpile safe, secure, and
reliable, especially in light of the decision to stop
underground nuclear testing [3]. Programs that
focus on the safe storage and disposition of excess
weapons plutonium in the United States and Russia
also need such properties.

Robbins recently reviewed the mechanical prop-
erties of d-phase Pu–1 wt% Ga (3.35 at.%) alloys
[4]. We examined the mechanical properties of
Pu–Ga alloys for a range of gallium concentrations
and purities, tested over a large range of tempera-
tures and strain rates as shown in Table 1 [5–10].
As noted by Robbins and previously shown by
the authors [11], the mechanical properties vary
substantially. As expected, the microstructures of
the samples tested in these studies also varied
.

http://dx.doi.org/10.1016/j.jnucmat.2005.10.016
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Table 1
Test conditions and microstructures characterizing the mechan-
ical behavior results reported in the literature

Experimental condition Range of the variable

Temperature, �C �60 to 558
Strain rates, s�1 1.4 · 10�5–75
Stress state Tension and torsion

Microstructure

Grain size, lm 1–30 · 90

Composition

Gallium content, wt% 0.29–1.63
Iron and nickel content, wt ppm <30–900
Carbon concentration, wt ppm 30–310

Experimental results

Yield stress (tension), MPa 48–125
Ultimate tensile strength, MPa 66–174
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substantially, reflecting different gallium contents,
impurity levels, and processing conditions. Robbins
provides a very useful review of property trends for
the Pu–1 wt% Ga alloy as a function of temperature,
strain rate, and grain size [4]. However, to extend
these trends to other Pu–Ga alloys and to isolate
the individual effects of test and microstructural
variables requires the development of a model based
on the alloys’ physical deformation mechanisms.

In Part I, we implement the physically based
mechanical threshold strength (MTS) model deve-
loped by Follansbee and Kocks [1], using a few
key experiments documented in the literature. In
Part II, we validate that model against 50 ambi-
ent-pressure, quasi-static experiments reported in
the literature and use the model to predict the effects
of gallium concentration, grain size, and various
impurities on the yield and ultimate strengths of
d-phase Pu–Ga alloys.

2. Mechanical threshold strength model:

introduction

The MTS model incorporates an accurate repre-
sentation of thermally activated deformation mech-
anisms based on the pioneering work of Kocks et al.
[12] and Mecking and Kocks [13]. The model is
appropriate for single-phase fcc metals whose dislo-
cation glide kinetics are controlled by thermally
activated dynamic recovery. We believe that this is
the case for gallium-stabilized d-phase plutonium
at ambient pressure, quasi-static strain rates, and
from room temperature to nearly 400 �C. Barmore
and Uribe’s strain-rate sensitivity data as a function
of temperature [14] and Wheeler and Robbins’
hot-torsion experimental saturation-stress levels [8]
provide the basis for this conclusion. For creep-rate
deformation, the upper temperature limit of the
model’s validity could be lower.

The MTS model assumes that the stress is the lin-
ear sum of three terms. The first two of these terms
sum to the material’s yield strength, while the third
term accounts for the material’s work hardening.
The model is represented by the following expres-
sion:

r
lðT ;wt% GaÞ ¼

ra

lðT ;wt% GaÞ

þ Sið_e; T Þ
r̂iðwt% GaÞ
l0ðwt% GaÞ

þ Seð_e; T Þ
r̂eð_e; T Þ

l0ðwt% GaÞ ; ð1Þ

where l is the shear modulus at the current tempe-
rature, l0 is the shear modulus at zero K, Sið_e; T Þ
and Seð_e; T Þ are functions, ra is a constant, r̂i is a
reference strength, termed the mechanical threshold

strength, and r̂eð_e; T Þ is a reference strength that
depends on the temperature and strain-rate history
of plastic deformation. The mechanical threshold
strength, r̂i, is assumed to be the yield strength in
the absence of thermal activation. In other words,
r̂i represents the yield strength at zero K. Gallium
content will affect the yield strength because gallium
atoms are in substitutional sites in the fcc d-phase
lattice [2]. Hence, we assume that the mechanical
threshold strength is also a function of gallium con-
tent. The shear modulus of d-phase alloys is a func-
tion of temperature and gallium content. The stress
ra is athermal and attributed to dislocation interac-
tions with long-range barriers, such as grain bound-
aries. Grain-size contributions to yield strength will
be included in this term of the constitutive model.

Each of these terms must be evaluated, based on
the available literature data, to construct the MTS
constitutive model for the Pu–Ga alloy system. This
model is used to assess the individual contributions
of strain rate, temperature, and gallium content to
the yield strength and to work hardening. Once
these effects are included, then the effects of micro-
structure, such as grain size and impurities, can be
isolated.

3. Mechanical threshold strength model:

development

We review the procedure used to determine the
coefficients for the MTS model and discuss the modi-



M.G. Stout et al. / Journal of Nuclear Materials 350 (2006) 113–121 115
fications required to make it applicable to Pu–Ga
alloys with different grain sizes and compositions.

3.1. Shear modulus as a function of temperature
and gallium content

The shear modulus as a function of temperature
and alloy composition is a key input parameter for
the MTS model because it affects the line energy of
dislocations that, in turn, influences the dynamics of
dislocation glide. We used the shear modulus data,
determined by ultrasonic methods, reported for
Pu–Ga alloys by Taylor et al. [15] for low tempera-
tures, down to 20 K, and from Harbur [16] and
Migliori et al. [17] for room and elevated tem-
peratures. Taylor, Linford, and Dean’s data for
Pu–1.0 wt% Ga and Pu–1.8 wt% Ga alloys annealed
at 470 �C for one week, see Fig. 1, show a smooth
temperature dependence with errors less than
±0.1%. Harbur’s shear modulus data for well
homogenized Pu–0.5 wt% Ga and Pu–1.0 wt% Ga
at temperatures of 300–625 K are also shown in
Fig. 1. Recently, Migliori et al. [17] have made the
most accurate measurements to date using a reso-
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Fig. 1. Shear modulus of Pu – 0.5, 0.68, 0.97, 1.0, 1.365 and 1.8 wt% Ga
Pu–3.35 at.% Ga). Data are from Taylor et al. [15], Harbur [16], and M
nant-ultrasound technique. They studied Pu –
0.68, 0.97, and 1.365 wt% alloys between 273 K
and 355 K. The data from these three independent
sources are reasonably consistent and cover the tem-
perature range, 20–625 K, for the Pu–Ga system.

The expression l = l0 � C/(exp(Tref./T) � 1) with
Tref. = 273 K and C = 5.27 · 103 fits the tempera-
ture dependence of the shear modulus quite well.
The data shown in Fig. 1 indicate a shift in the value
of the shear modulus at absolute-zero temperature,
l0, but no change in the temperature dependence
with gallium content. We used a linear equation to
specify the compositional dependency of the shear
modulus at zero K:

l0 ¼ 1:7366� 104 þ 2634� ðwt% GaÞ. ð2Þ
Eq. (2) combined with the relation

l ¼ l0 �
5:27� 103

ðexpð273=T Þ � 1Þ ð3Þ

describe both the temperature and gallium composi-
tional dependency of the shear modulus. Fig. 2
shows that these functions fit the experimental data
well.
400 500 600 700

rature (K)

 Linford, and Dean [15]:

 wt. % Ga

t. % Ga

Migliori et al. [17]:

Pu-1.365 wt. % Ga

Pu-0.97 wt. % Ga

Pu-0.68 wt. % Ga

Harbur [16]:
Pu-1.0 wt. % Ga

Pu-0.5 wt. % Ga

alloys as a function of temperature (Pu–1 wt% Ga is equivalent to
igliori et al. [17].



116 M.G. Stout et al. / Journal of Nuclear Materials 350 (2006) 113–121
3.2. Grain-size effects

Grain-size effects must be included in the MTS
model for Pu–Ga alloys because typical processing
methods can yield a wide range of grain sizes.
Wheeler et al. [9] found the grain-size dependency
of the yield strength, in both tension and compres-
sion, to be moderate and well described by the classi-
cal Hall–Petch relation, ry ¼ r0 þ jffiffi

d
p , where r0 and j

are constants and d is the grain size. They determined
values for r0 and j of 66.8 MPa and 82.7 MPa lm1/2,
respectively. This value for j compares to a value of
70 for aluminum, 120 for copper, 220 for nickel, and
70 for silver [18]. Wheeler, Thayer, and Robbins
determined this relationship using a Pu–1 wt% Ga
alloy with grain sizes of 1, 4, and 7 lm.

The literature contains little information about
the grain-size dependency of work hardening in
Pu–Ga alloys. We, therefore, examined the grain-
size dependency of yield strength and work harden-
ing in two other fcc metals, an Al–6% Ni alloy [19]
and Monel 400 [20], a nickel base alloy with 32%
Cu, 2.1% Fe, and 1.0% Mn. Grain-size effects were
studied over a range of grain sizes from 1.2 lm to
6.25 lm and 9.5 lm to 202 lm, for the Al–6% Ni
and Monel 400 respectively. In both cases, the grain
size affected the yield strength but did not appear to
influence the hardening behavior. In other words,
the grain-size effect manifested itself as a vertical
shift in the stress/strain curves, with finer grain sizes
exhibiting higher yield strengths.

Based on these results, we incorporated grain-size
effects as an additive term to the yield strength in
Pu–Ga alloys. We defined a reference grain size
and then employed the Hall–Petch relation with
the parameters determined by Wheeler, Thayer,
and Robbins to account for different grain sizes.
In Eq. (1), this increment of yield strength was
added to the term ra, which will be given a value
sufficient to assure that the sum is a positive num-
ber. Expressing this algebraically yields

Drgs ¼ r0 þ j
1ffiffiffi
d
p

� �
� r0 þ j

1ffiffiffiffiffi
d0

p
� �

. ð4Þ

If we combine the terms in Eq. (4) and add Drgs to
ra, Eq. (1) becomes

r
l
¼ 1

l
ra þ j

ffiffiffiffiffi
d0

p
�

ffiffiffi
d
pffiffiffiffiffiffiffiffiffiffiffi

d0 � d
p

 ! !
þ Sið_e; T Þ

r̂i

l0

þ Seð_e; T Þ
r̂e

l0

; ð5Þ
where j = 82.73 MPa lm1/2, d0 is the reference
grain size, and d is actual grain size in lm. The mean
grain size of the materials studied in the literature
was 20 lm. We chose this value for a reference grain
size and set ra = 10 MPa, which is typical for fcc
metals. Assuming grain size does not affect the hard-
ening as was the case for the Al–6% Ni and Monel
400, no grain-size term was incorporated into the
third part of Eq. (5).

3.3. Influence of the mechanical threshold strength

on yield strength

Follansbee and Kocks [1] specified the function
Sið_e; T Þ as

Sið_e; T Þ ¼ 1� kT

lb3g0i

ln
_e0i

_e

� �� �1=qi
" #1=pi

. ð6Þ

In Eq. (6), k is Boltzmann’s constant (k = 1.38�23

J/K), b is the Burger’s vector (b = 3.28 · 10�10 m),
_e0i is a reference strain rate, typically _e0i ¼ 107 s�1,
qi and pi are constants routinely taken to be 3/2
and 1/2 respectively, l is the shear modulus based
on Eqs. (2) and (3), T is the temperature, _e is the
strain rate, and finally g0i is a constant that must
be determined. This expression has the form of an
Arrhenius relation appropriate for thermally acti-
vated processes.

For the moment, we will ignore the material’s
work hardening and consider only the first two
terms in Eq. (5):

rys

l
¼ 1

l
ra þ j

ffiffiffiffiffi
d0

p
�

ffiffiffi
d
pffiffiffiffiffiffiffiffiffiffiffi

d0 � d
p

 ! !
þ Si _e; Tð Þ r̂i

l0

ð7Þ

or, substituting for Sið_e; T Þ,

rys

l
¼ 1

l
ra þ j

ffiffiffiffiffi
d0

p
�

ffiffiffi
d
pffiffiffiffiffiffiffiffiffiffiffi

d0 � d
p

 ! !

þ 1� kT

lb3g0i

ln
_e0i

_e

� �� �1=qi
" #1=pi

r̂i

l0

. ð8Þ

We linearize Eq. (8) in order to solve for r̂i and g0i

explicitly from yield-strength data:

rys � ra � j

ffiffiffiffiffi
d0

p
�

ffiffiffi
d
pffiffiffiffiffiffiffiffi

d0d
p

 ! !,
l

" #pi

¼ r̂i

l0

� �pi

� r̂i

l0

� �pi 1

g0i

� �1=qi

� kT

lb3
� ln _e0i

_e

� �� �1=qi

.

ð9Þ
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Beitscher [5], Hecker and Morgan [6], and Miller
and White [7] published yield strengths for
Pu–1 wt% Ga. We used their data substituting the
appropriate grain size, temperature, strain rate,
and assuming a reference grain size of d0 = 20 lm
to solve for r̂i and g0i. On this basis, we determined
that g0i = 0.7098 and that r̂i ¼ 235:5 MPa for the
Pu–1 wt% Ga alloy in question.

The values of the coefficients pi, qi, and _e0i were
based on those determined for similar materials
evaluated with the MTS model. Using a value of
g0i = 0.7098, we calculated the values of r̂i associ-
ated with a particular yield strength and Pu–Ga
composition. These results, plotted in Fig. 3, dem-
onstrate that the mechanical threshold strength
increases with increasing gallium content. We fit this
dependency with a second order polynomial, r̂i ¼
197:49� 30:424� ðwt% GaÞ þ 68:438� ðwt% GaÞ2
and found the degree of error is no worse than the
scatter in the experimental data.

3.4. Work hardening behavior

Work hardening describes the increase in flow
stress with increasing deformation before saturation
is reached or the specimen reaches its ultimate
strength in tension and begins to deform non-
uniformly; that is, it necks. In fcc metals, work
hardening is caused by dislocation multiplication,
dislocation–solute interactions, and dislocation–
dislocation interactions. Saturation occurs as dis-
location hardening and dynamic recovery evenly
balance one another.

3.4.1. Governing equations

The work hardening law, the last term in Eq. (1),
was formulated by Follansbee and Kocks [1] in a
manner very similar to the yield term. They used a
reference strength value, and then discounted the
reference strength as a function of the extent of
thermal activation. In this case, the reference
strength is not a constant but a function of the evo-
lution of plastic deformation. Thermal activation is
accounted for by the term Seð_e; T Þ in Eq. (1):

Seð_e; T Þ ¼ 1� kT

lb3g0e

ln
_e0e

_e

� �� �1=qe
" #1=pe

ð10Þ

in which we assign pe = 2/3, qe = 1, _e0e ¼ 107 s�1,
and g0e = 1.6. These values are typical for other
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fcc metals. The other terms in Eq. (10) have their
conventional definition.

The key to the hardening law is the definition of
the reference flow stress, r̂e. Because r̂e evolves for
each increment of plastic strain as a function of
the temperature and strain rate of that particular
straining increment, it must be expressed in differen-
tial form:

dr̂e

de
¼ H0 1� r̂e

r̂esð_e; T Þ

� �a

. ð11Þ

In Eq. (11), the initial slope of the stress/strain
curve, H0, and a saturation stress, r̂es, define the
hardening law. By defining the law in this fashion,
we are assuming that a constant stress level is
approached at large strain. Theoretically, H0 should
be a material dependent constant and should not be
a function of strain rate or temperature [21].
Accordingly, based on Beitscher’s data [5] we take
H0 = 2000 MPa.

The saturation stress in Eq. (11) is that appropri-
ate for the instantaneous temperature and strain
rate of that straining increment. This saturation
stress includes thermal activation. To remove the
dependency on thermal activation we must refer-
ence r̂es to the saturation stress at zero K, r̂0es,
which is a constant. We accomplished this in the
same manner as Follansbee and Kocks, through a
logarithmic relationship:

ln
_e

_e0es

� �
¼ lb3g0es

kT
ln

r̂es

r̂0es

� �
. ð12Þ

In Eq. (12), the physical coefficients have their
usual meaning and _e0es ¼ 107 s�1. The parameters
g0es and r̂0es must be found empirically by fitting
hardening curves that were taken at a number of
temperatures and strain rates. Some data must ex-
tend to strains greater than those of the classic ten-
sile test for the evaluation of g0es and r̂0es to be
accurate. Compression or torsion tests provide this
type of data.

Wheeler and Robbins [8] conducted large-strain
torsion experiments on a high purity, <300 ppm of
metallic impurities, Pu–1 wt% Ga alloy using a long,
solid-cylinder torsion geometry. Their cylinders
were twisted as many as 400 revolutions, to shear
strains greater than 17, at a constant shear-strain
rate of _c ¼ 4:17� 10�2 s�1 on the surface of the
specimen. They conducted experiments at and
above room temperature in 50 �C increments up to
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450 �C, using a vacuum chamber and a resistance
furnace.

We calculated the shear-stress/shear-strain
curves that result from the torque/angle data, based
on values of work hardening, Hecker and Morgan
[6], and strain-rate sensitivity, Hecker and Morgan
[6] and Barmore and Uribe [14], found in the litera-
ture for a Pu–1 wt% Ga alloy. We describe this pro-
cedure in detail [20].

Fig. 4 shows these stress/strain results for the
high-purity metal, combined with a treatment of
the data for which we assumed no strain-rate
sensitivity or work hardening. As expected, at high
temperatures the two solutions converge because
the constitutive behavior of the Pu–1 wt% Ga
approaches perfectly plastic. In Fig. 4, we plot
‘effective stress’ versus ‘effective strain,’ using the
von Mises definition of effective stress and effective
strain to compare torsion and uniaxial tension
experiments. By combining Wheeler and Robbins’
torsion results with Hecker and Morgan’s, and
Beitscher’s tensile data, we established a dataset
for evaluating the hardening behavior in the MTS
law.
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3.4.2. Fitting the hardening law

The descriptions of work hardening given by
Eqs. (11) and (12) remain to be fit, by specifying
g0es, r̂0es, and a. In Eq. (11), the initial slope, H0,
and saturation stress, r̂es, of the hardening curve
are known. Only the parameter a needs to be deter-
mined. The term a affects the degree of ‘bow’ in the
stress/strain curve between the initial slope and the
saturation stress. For the Pu–1 wt% Ga we found
that a = 2 best fits the literature data.

The two terms g0es and r̂0es are the most critical
to fit the hardening behavior. The term g0es controls
the spread between the hardening curves as a func-
tion of temperature and strain rate. Too large a
value of g0es produces insufficient temperature or
strain-rate sensitivity, whereas too low a value
results in excessive sensitivity. The constant r̂0es con-
trols the saturation-stress level of the hardening
curves. If predictions from the model lie below the
torsion data, the value of r̂0es must be increased
and visa versa.

The experimental data represented by the solid
lines and the predictions from our full model
represented by the symbols are compared in Fig. 5.
0.8 1 1.2 1.4

ve Strain

20oC

150oC

200oC

300oC

400oC

450oC

ng

calculated from Wheeler and Robbins’ [8] torque/angle data for
peratures (irregularities in the curves are a result of digitization).



0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5

E
ffe

ct
iv

e 
S

tr
es

s 
(M

P
a)

Effective Strain

W
heeler and R

obbins, torsion experim
ents [8]:   ε

 =
 2.4x10

-2 s
-1 

20oC

200o
C

300oC

400
o
C

Beitscher [5]: -60oC, ε = 6.667x10-4
 s-1 

Hecker and Morgan [6]:

ε = 3.0x10-1 s-1, 20oC

Hecker and Morgan [6]:

ε = 3.3x10-4 s-1, 20oC

.

.

.

.

Fig. 5. The experimental stress/strain data used to fit the work-hardening law, solid lines, and the hardening behavior predicted by the
MTS law for a = 2, g0es = 3.6, and r̂0es ¼ 115 MPa.

120 M.G. Stout et al. / Journal of Nuclear Materials 350 (2006) 113–121
The best agreement between model and simulation
was obtained for values of g0es = 3.6 and r̂0es ¼
115 MPa.

The yield strengths predicted by the MTS model
deviate from Hecker and Morgan’s data, but the
hardening behavior follows their data well. We opti-
mized the MTS model’s fit of yield behavior inde-
pendent of these data, and the difference between
the model’s prediction and Hecker and Morgan’s
experiments reflect expected deviations between
experiment and theory. We will consider the severity
of these deviations in Part II, in which we discuss
model validation.

It is apparent from Fig. 5 that the saturation
stresses at large strains are matched well as a func-
tion of temperature. However, our model does not
fit the torsion yield response accurately. These devi-
ations likely result from our inability to resolve yield
strains of <0.05 on the plots published by Wheeler
and Robbins. In addition, because of the large stress
and strain gradients across the radius of the cylin-
der, the surface of the torsion sample yields while
the center remains elastic.

Also, we were unable to fit the hardening curve of
Beitscher at �60 �C. All of our other fits of tensile-
test hardening behavior at different strain rates and
higher temperatures are accurate, and this leads us
to suspect the applicability of the �60 �C experi-
mental result. As shown by Hecker et al. [2], it is
quite possible to induce transformation of the
retained d-phase to the a-phase at low temperatures.
If the d! a transformation occurred, it would have
increased the work hardening of the �60 �C test
over the MTS model’s prediction, consistent with
the reported experimental results.

4. Discussion and conclusions

We constructed and fitted the MTS model to pre-
dict the yield and flow stress behavior for single-
phase d-stabilized Pu–Ga alloys as a function of
strain rate and temperature. Our model accounts
for variations in gallium content and grain size.
The full description of the model and all of its coef-
ficients are tabulated in Appendix A. The model is
based only on published quasi-static, ambient-pres-
sure data.

In the accompanying Part II paper, we validate
the model by considering all existing literature
Pu–Ga alloy data. The validation compares the mod-
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el’s prediction against published yield and ultimate
tensile strengths. We also use the model to assess
the significance of different compositional and micro-
structural variables. For example, we ascertain the
strengthening effects of the gallium alloying addi-
tions, the significance of iron and nickel or carbon
content, and the influence of grain size on strength.

Appendix A. Equations used for the MTS model

fit to Pu–Ga

•
r
l
¼ 1

l
ra þ j

ffiffiffiffiffi
d0

p
�

ffiffiffi
d
pffiffiffiffiffiffiffiffi

d0d
p

 ! !
þ Sið_e; T Þ

r̂i

l0

þ Seð_e; T Þ
r̂e

l0

;

where ra = 10 MPa; d0 = 20 lm; d = alloys grain
1/2
size in lm; j = 82.73 MPa lm .

• l ¼ l0 �
5270 MPa

exp 273 K
T

� �
� 1

;

where l0 = 2 · 104 MPa; l0 = 17366 + 2634 ·

(wt% Ga).

• Sið_e; T Þ ¼ 1� kT

lb3g0i

ln
_e0i

_e

� �� �1=qi
" #1=pi

;

where
k

b3
¼ 0:3911 MPa/K; k = 1.38 · 10�23 J/K;
b = 3.28 · 10�10 m; _e0i ¼ 1� 107 s�1; g0i = 0.7098;

qi = 1.5, pi = 0.5;
r̂i

l0

¼ 0:012025 (or r̂i ¼ 240:5

MPa); r̂i¼ 197:49�30:424�ðwt% GaÞþ68:438
�ðwt% GaÞ2.

• Seð_e; T Þ ¼ 1� kT

lb3g0e

ln
_e0e

_e

� �� �1=qi
" #1=pi

;

where _e0e ¼ 1� 107 s�1; g0e = 1.6; qe = 1; pe = 2/3.
� �a
•
dr̂e

de
¼ H0 1� r̂e

r̂esð_e; T Þ
;

where h0 = 2000 MPa, a = 2.
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• ln
_e0es

¼ 0es

kT
ln

es

r̂0es
;

where g0es = 3.6; r̂es0¼ 115 MPa; _e0es¼ 1�107 s�1.
The coefficients were determined based on open
literature data at strain rates at and below 3.0 s�1.
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